

Digital Integrated Circuits A Design Perspective

Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Arithmetic Circuits

January, 2003

A Generic Digital Processor

Building Blocks for Digital Architectures

Arithmetic unit

- Bit-sliced datapath (adder, multiplier, shifter, comparator, etc.)

Memory

- RAM, ROM, Buffers, Shift registers

Control

- Finite state machine (PLA, random logic.)
- Counters

Interconnect

- Switches
- Arbiters
- Bus

© Digital Integrated Circuits^{2nd}

An Intel Microprocessor

1000um

Itanium has 6 integer execution units like this

Tile identical processing elements

© Digital Integrated Circuits^{2nd}

Bit-Sliced Datapath

From register files / Cache / Bypass

Itanium Integer Datapath

© Digital Integrated Circuits^{2nd}

© Digital Integrated Circuits^{2nd}

Full-Adder

A	В	C _i	S	С,	Carry status
0	0	0	0	0	delete
0	0	1	1	0	delete
0	1	0	1	0	propagate
0	1	1	0	1	propagate
1	0	0	1	0	propagate
1	0	1	0	1	propagate
1	1	0	0	1	generate
1	1	1	1	1	generate

The Binary Adder

$$S = A \oplus B \oplus C_{i}$$

= $A\overline{B}\overline{C}_{i} + \overline{A}B\overline{C}_{i} + \overline{A}\overline{B}C_{i} + ABC_{i}$
$$C_{0} = AB + BC_{i} + AC_{i}$$

© Digital Integrated Circuits^{2nd}

Express Sum and Carry as a function of P, G, D

Define 3 new variable which ONLY depend on A, B Generate (G) = AB Propagate (P) = A \oplus B Delete = $\overline{A} \overline{B}$ $C_o(G, P) = G + PC_i$ $S(G, P) = P \oplus C_i$

Can also derive expressions for S and C_o based on D and P Note that we will be sometimes using an alternate definition for **Propagate (P) = A + B**

© Digital Integrated Circuits^{2nd}

Complimentary Static CMOS Full Adder

© Digital Integrated Circuits^{2nd}

A Better Structure: The Mirror Adder

24 transistors

© Digital Integrated Circuits^{2nd}

Stick Diagram

© Digital Integrated Circuits^{2nd}

The Mirror Adder

- •The NMOS and PMOS chains are completely symmetrical. A maximum of two series transistors can be observed in the carrygeneration circuitry.
- •When laying out the cell, the most critical issue is the minimization of the capacitance at node C_0 . The reduction of the diffusion capacitances is particularly important.
- •The capacitance at node C_o is composed of four diffusion capacitances, two internal gate capacitances, and six gate capacitances in the connecting adder cell .
- •The transistors connected to C_i are placed closest to the output.
- •Only the transistors in the carry stage have to be optimized for optimal speed. All transistors in the sum stage can be minimal size.

Transmission Gate Full Adder

One-phase dynamic CMOS adder

© Digital Integrated Circuits^{2nd}

One-phase dynamic CMOS adder

© Digital Integrated Circuits^{2nd}

One-phase dynamic CMOS adder

© Digital Integrated Circuits^{2nd}

The Ripple-Carry Adder

Worst case delay linear with the number of bits

 $t_d = O(N)$

$$t_{adder} = (N-1)t_{carry} + t_{sum}$$

Goal: Make the fastest possible carry path circuit

© Digital Integrated Circuits^{2nd}

Inversion Property

$$\bar{S}(A, B, C_i) = S(\bar{A}, \bar{B}, \overline{C_i})$$
$$\overline{C_o}(A, B, C_i) = C_o(\bar{A}, \bar{B}, \overline{C_i})$$

© Digital Integrated Circuits^{2nd}

Minimize Critical Path by Reducing Inverting Stages

Exploit Inversion Property

Carry Look-Ahead Adders

Carry boolean equations

$$C_{i} = G_{i} + P_{i} C_{i-1} = \overline{K_{i} + P_{i} \overline{C}_{i-1}}$$
$$\overline{C}_{i} = K_{i} + P_{i} \overline{C}_{i-1} = \overline{G_{i} + P_{i} C_{i-1}}$$

Having defined:

$$G_{i} = A_{i} B_{i}$$
$$P_{i} = A_{i} + B_{i}$$
$$K_{i} = \overline{A_{i} + B_{i}} = \overline{A_{i}} \overline{B_{i}}$$

© Digital Integrated Circuits^{2nd}

Carry-Lookahead Adders

Therefore: $\begin{aligned} C_1 &= G_1 + P_1 C_0 \\ C_2 &= G_2 + P_2 (G_1 + P_1 C_0) \\ C_3 &= G_3 + P_3 (G_2 + P_2 (G_1 + P_1 C_0)) \\ C_4 &= G_4 + P_4 (G_3 + P_3 (G_2 + P_2 (G_1 + P_1 C_0))) \end{aligned}$

Carry-Lookahead Adders

Two-level carry equations:

$$\begin{split} C_1 &= G_1 + P_1 \, C_0 \\ C_2 &= G_2 + P_2 \, G_1 + P_2 \, P_1 \, C_0 \\ C_3 &= G_3 + P_3 \, G_2 + P_3 \, P_2 \, G_1 + P_3 \, P_2 \, P_1 \, C_0 \\ C_4 &= G_4 + P_4 \, G_3 + P_4 \, P_3 \, G_2 + P_4 \, P_3 \, P_2 \, G_1 + P_4 \, P_3 \, P_2 \, P_1 \, C_0 \end{split}$$

Look-Ahead: Topology

Expanding Lookahead equations:

$$C_{o,k} = G_k + P_k(G_{k-1} + P_{k-1}C_{o,k-2})$$

All the way: $C_{o,k} = G_k + P_k(G_{k-1} + P_{k-1}(... + P_1(G_0 + P_0C_{i,0})))$

Manchester Carry Chain

Manchester Carry Chain

Manchester Carry Chain

Stick Diagram

Propagate/Generate Row

© Digital Integrated Circuits^{2nd}

Carry-Bypass Adder

Idea: If (P0 and P1 and P2 and P3 = 1) then $C_{03} = C_0$, else "kill" or "generate".

Carry-Bypass Adder (cont.)

$$t_{adder} = t_{setup} + M_{tcarry} + (N/M - 1)t_{bypass} + (M - 1)t_{carry} + t_{sum}$$

© Digital Integrated Circuits^{2nd}

Carry Ripple versus Carry Bypass

© Digital Integrated Circuits^{2nd}

Carry-Select Adder

Carry Select Adder: Critical Path

Linear Carry Select

 $t_{add} = t_{setup} + \left(\frac{N}{M}\right) t_{carry} + M t_{mux} + t_{sum}$

© Digital Integrated Circuits^{2nd}

Square Root Carry Select

$$t_{add} = t_{setup} + P \cdot t_{carry} + (\sqrt{2N}) t_{mux} + t_{sum}$$

© Digital Integrated Circuits^{2nd}
Adder Delays - Comparison

© Digital Integrated Circuits^{2nd}

Definizione

$$\begin{split} (G_1^2,P_1^2) &= (g_2,p_2) \circ (g_1,p_1) = (g_2+p_2\,g_1,\,p_2\,p_1) \\ G_{2:1} &= G_1^2 = g_2 + p_2\,g_1 \\ P_{2:1} &= P_1^2 = p_2\,p_1 \end{split}$$

Properties of the "O" operator

Proprietà associativa

$$\begin{split} &((g_3, p_3) \circ (g_2, p_2)) \circ (g_1, p_1) = (g_3, p_3) \circ ((g_2, p_2) \circ (g_1, p_1)) \\ &Dimostrazione \\ &((g_3, p_3) \circ (g_2, p_2)) \circ (g_1, p_1) = (g_3 + p_3 \, g_2, p_3 \, p_2) \circ (g_1, p_1) = \\ &(g_3 + p_3 \, g_2 + p_3 \, p_2 \, g_1, p_3 \, p_2 \, p_1) \\ &(g_3, p_3) \circ ((g_2, p_2) \circ (g_1, p_1)) = (g_3, p_3) \circ (g_2 + p_2 \, g_1, p_2 \, p_1) = \\ &(g_3 + p_3 (g_2 + p_2 \, g_1), p_3 \, p_2 \, p_1) = (g_3 + p_3 \, g_2 + p_3 \, p_2 \, g_1, p_3 \, p_2 \, p_1) \end{split}$$

Properties of the "O" operator

Idempotenza

 $(g,p) \circ (g,p) = (g,p)$

Elemento neutro: (0,1)

 $(g,p) \circ (0,1) = (g,p)$

N.B.: Non gode della proprietà commutativa $(g_2, p_2) \circ (g_1, p_1) \neq (g_1, p_1) \circ (g_2, p_2)$

© Digital Integrated Circuits^{2nd}

Group Generate and Propagate

Definizione:

$$(G_0^k, P_0^k) = (g_0, p_0) \text{ per } k = 0$$

 $(G_0^k, P_0^k) = (g_k, p_k) \circ (g_{k-1}, p_{k-1}) \circ \cdots \circ (g_0, p_0) \text{ per } k > 0$

Inoltre, se i < k:

$$(G_i^k, P_i^k) = (g_k, p_k) \circ (g_{k-1}, p_{k-1}) \circ \cdots \circ (g_i, p_i)$$

Group Generate and Propagate

Teorema:

Se
$$C_{in} = 0$$
, allora $G_0^k = C_{out,k}$
Dimostrazione per induzione:
Posto $k = 0$, $C_{in} = 0$,
 $G_0^0 = g_0$
 $C_{out,0} = g_0 + p_0 C_{in} = g_0$
 $G_0^0 = C_{out,0}$

© Digital Integrated Circuits^{2nd}

Group Generate and Propagate

Posto
$$k = 1, C_{in,1} = C_{out,0} = g_0,$$

 $G_0^1 = g_1 + p_1 g_0$
 $C_{out,1} = g_1 + p_1 C_{in,1} = g_1 + p_1 g_0$
 $G_0^1 = C_{out,1}$
Posto $k > 1, C_{in,k} = C_{out,k-1} = G_0^{k-1}$
 $(G_0^k, P_0^k) = (g_k, p_k) \circ (G_0^{k-1}, P_0^{k-1}) = (g_k + p_k G_0^{k-1}, p_k P_0^{k-1})$
 $C_{out,k} = g_k + p_k C_{in,k} = g_k + p_k G_0^{k-1}$
 $G_0^k = C_{out,k}$

© Digital Integrated Circuits^{2nd}

Look-Ahead - Basic Idea

 $C_{o,k} = f(A_k, B_k, C_{o,k-1}) = G_k + P_k C_{o,k-1}$

© Digital Integrated Circuits^{2nd}

Logarithmic Look-Ahead Adder

Brent-Kung BLC adder

© Digital Integrated Circuits^{2nd}

Folding of the inverse tree

© Digital Integrated Circuits^{2nd}

Folding the inverse tree

© Digital Integrated Circuits^{2nd}

Dense tree with minimum fan-out

© Digital Integrated Circuits^{2nd}

Dense tree with simple connections

© Digital Integrated Circuits^{2nd}

Carry Lookahead Trees

$$C_{o,0} = G_0 + P_0 C_{i,0}$$

$$C_{o,1} = G_1 + P_1 G_0 + P_1 P_0 C_{i,0}$$

$$C_{o,2} = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_{i,0}$$

$$= (G_2 + P_2 G_1) + (P_2 P_1)(G_0 + P_0 C_{i,0}) = G_{2:1} + P_{2:1} C_{o,0}$$

Can continue building the tree hierarchically.

Tree Adders

16-bit radix-2 Kogge-Stone tree

© Digital Integrated Circuits^{2nd}

Tree Adders

16-bit radix-4 Kogge-Stone Tree

© Digital Integrated Circuits^{2nd}

16-bit radix-2 sparse tree with sparseness of 2

© Digital Integrated Circuits^{2nd}

Tree Adders

Brent-Kung Tree

© Digital Integrated Circuits^{2nd}

Example: Domino Adder

Propagate

Generate

© Digital Integrated Circuits^{2nd}

Example: Domino Adder

Propagate

Generate

© Digital Integrated Circuits^{2nd}

Example: Domino Sum

© Digital Integrated Circuits^{2nd}

Adders – Summary

Adder	Complexity	Latency
Ripple carry	N	N
Carry select $[1]$	2N	$(2\sqrt{N}-1)$
Carry select $[2]$	2N	$\sqrt{(2N-7/4)}+1/2$
Carry skip	N	$2(\sqrt{2N}-1)$
Bin. look. (tree)	$2(N-1) - \log N$	$2\log N$
Bin. look. (array)	$N \log N$	$2 + \log N$

[1] Uniform blocks sized $K = \sqrt{N}$ [2] Scaled blocks with $K_{min} = 1$ or $K_{min} = 2$

© Digital Integrated Circuits^{2nd}

© Digital Integrated Circuits^{2nd}

The Binary Multiplication

$$X = \sum_{n=0}^{N-1} x_n 2^n, \qquad Y = \sum_{n=0}^{N-1} y_n 2^n$$

$$Z = XY = \left(\sum_{n=0}^{N-1} x_n \, 2^n\right) \, \left(\sum_{m=0}^{N-1} x_m \, 2^m\right)$$

$$= \sum_{n=0}^{N-1} \sum_{m=0}^{N-1} x_n y_m 2^{n+m} = \sum_{n=0}^{2N-1} z_n 2^n$$

© Digital Integrated Circuits^{2nd}

The Binary Multiplication

Multiplicand Multiplier					$egin{array}{c} y_3 \ x_3 \end{array}$	$egin{array}{c} y_2 \ x_2 \end{array}$	$y_1 \\ x_1$	$egin{array}{c} y_0 \ x_0 \end{array}$	× =
Partial Products		x_3y_3	$x_2y_3 \\ x_3y_2$	$x_1y_3 \\ x_2y_2 \\ x_3y_1$	$x_0y_3 \ x_1y_2 \ x_2y_1 \ x_3y_0$	$x_0y_2 \ x_1y_1 \ x_2y_0$	$\begin{array}{c} x_0 y_1 \\ x_1 y_0 \end{array}$	x_0y_0	
Result	z_7	z_6	z_5	z_4	z_3	z_2	z_1	z_0	

© Digital Integrated Circuits^{2nd}

The Binary Multiplication

The Array Multiplier

The MxN Array Multiplier — Critical Path

$$t_{mult} = [(M-1) + (N-2)]t_{carry} + (N-1)t_{sum} + t_{and}$$

© Digital Integrated Circuits^{2nd}

Carry-Save Multiplier

Vector Merging Adder

$$t_{mult} = (N-1)t_{carry} + (N-1)t_{and} + t_{merge}$$

© Digital Integrated Circuits^{2nd}

Multiplier Floorplan

© Digital Integrated Circuits^{2nd}

Wallace-Tree Multiplier

Wallace-Tree Multiplier

Wallace-Tree Multiplier

© Digital Integrated Circuits^{2nd}

Wallace Tree Mult. Performance

$$\left(\frac{3}{2}\right)^n = \frac{N}{2}$$

$$n \log_2\left(\frac{3}{2}\right) = \log_2\left(\frac{N}{2}\right)$$

$$n = \frac{\log_2 (N/2)}{\log_2 (3/2)} = 1.71 (\log_2 N - 1)$$

 $t_{mult} = 1.71 (\log_2 N - 1) t_{sum} + t_{adder}$

© Digital Integrated Circuits^{2nd}

Wallace Tree Multiplier Complexity

$$N_{CSA} = \frac{N}{3} + \left(\frac{2}{3}\right) \frac{N}{3} + \left(\frac{2}{3}\right)^2 \frac{N}{3} + \dots + \left(\frac{2}{3}\right)^{n-1} \frac{N}{3}$$
$$= \frac{N}{3} \sum_{n=0}^n \left(\frac{2}{3}\right)^{n-1}$$
$$= \frac{N}{3} \frac{1 - (2/3)^n}{1 - 2/3} = N - 2$$

 $A_{WTM} \simeq N(N-2)A_{adder}$

© Digital Integrated Circuits^{2nd}
4:2 Adder

n	Cin	Cout	Carry	Sum
0	0	0	0	0
1	0	0	0	1
2	0	*	•	0
3	0	1	0	1
4	0	1	1	0
0	1	0	0	1
1	1	0	1	0
2	1	•	*	1
3	1	1	1	0
4	1	1	1	1
			1	9

Eight-input Tree

Architectural comparison of multiplier solutions

© Digital Integrated Circuits^{2nd}

SPIM Architecture

© Digital Integrated Circuits^{2nd}

SPIM Pipe Timing

	•					·		
Cycle Action	0	1	2	3	4	5	6	7
Booth Encode	startup 0-15	16-31	32-47	48-63	-			
A and B block Booth Muxs		0-15	16-31	32-47	48-63			
A Block CSA's			0-7	16-23	32-39	48-55		
B Block CSA's			8-15	24-31	40-47	56-63		
C Block				0-15	16-31	32-47	48-63	
D Block					ciear 0-15	16-31	32-47	48-63

SPIM Microphotograph

© Digital Integrated Circuits^{2nd}

SPIM clock generator circuit

© Digital Integrated Circuits^{2nd}

Binary Tree Multiplier Performance

$$2^{n} = \frac{N}{2}$$

$$n = \log_{2}\left(\frac{N}{2}\right)$$

$$t_{mult} = 2\left(\log_{2} N - 1\right)t_{sum} + t_{adder}$$

© Digital Integrated Circuits^{2nd}

Binary Tree Multiplier Complexity

$$N_{CSA} = \frac{N}{4} + \left(\frac{1}{2}\right) \frac{N}{4} + \left(\frac{1}{2}\right)^2 \frac{N}{4} + \dots + \left(\frac{1}{2}\right)^{n-1} \frac{N}{4}$$
$$= \frac{N}{4} \sum_{k=0}^{n-1} \left(\frac{1}{2}\right)^k$$
$$= \frac{N}{4} \frac{1 - (1/2)^n}{1 - 1/2} = \frac{N}{2} - 1$$
$$A_{BTM} \simeq N(N-2) A_{adder}$$

© Digital Integrated Circuits^{2nd}

Multipliers – Summary

- Optimization Goals Different Vs Binary Adder
- Once Again: Identify Critical Path
- Other possible techniques
 - Logarithmic versus Linear (Wallace Tree Mult)
 - Data encoding (Booth)
 - Pipelining

FIRST GLIMPSE AT SYSTEM LEVEL OPTIMIZATION

Multipliers – Summary

Multiplier	Complexity	Latency
Serial multiplier	N	N^2
Serial carry save	N	2N
Array multiplier	N(N-2)	N-2
Wallace tree	N(N-2)	$1.71 (\log N - 1)$
Binary tree	N(N-2)	$2\left(\log N - 1\right)$

Booth encoding

$$X = \sum_{n=0}^{N-2} x_n 2^n - x_{N-1} 2^{N-1}$$

=
$$\sum_{n=0}^{N/2-1} x_{2n} 2^{2n} + \sum_{n=1}^{N/2-1} x_{2n-1} 2^{2n-1} - x_{N-1} 2^{N-1}$$

=
$$\sum_{n=0}^{N/2-1} (x_{2n-1} + x_{2n} - 2x_{2n+1}) 2^{2n}$$

© Digital Integrated Circuits^{2nd}

Booth encoding

x_{2n+1}	x_{2n}	x_{2n-1}	f(2n)	f(2n)Y
0	0	0	0	0
0	0	1	1	Y
0	1	0	1	Y
0	1	1	2	2Y
1	0	0	-2	-2Y
1	0	1	-1	-Y
1	1	0	-1	-Y
1	1	1	0	0

Tree Multiplier with Booth Encoding

© Digital Integrated Circuits^{2nd}

The f.p. addition algorithm

Exponent comparison and swap (if needed)
 Mantissas' aligment
 Addition

Normalization of result

Rounding of result

The f.p. multiplication algorithm

Mantissas' multiplication
 Exponent addition
 Mantissa normalization and exponent adjusting (if needed)
 Rounding of result

© Digital Integrated Circuits^{2nd}

Iterative Division (Newton-Raphson)

$$\frac{a}{b} = \frac{1}{b} \times a$$

$$f(x) = \frac{1}{x} - b = 0 \quad \rightarrow \quad x^* = \frac{1}{b}$$

$$y(x) \simeq f(x_0) + f'(x_0) (x - x_0)$$

© Digital Integrated Circuits^{2nd}

Iterative Division (Newton-Raphson)

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = x_0 - \frac{1/x_0 - b}{-1/x_0^2} = x_0(2 - bx_0)$$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = x_1 - \frac{1/x_1 - b}{-1/x_1^2} = x_1(2 - bx_1)$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{1/x_n - b}{-1/x_n^2} = x_n(2 - bx_n)$$

© Digital Integrated Circuits^{2nd}

Quadratic Convergence of the Newton Method

$$\varepsilon_n = \left| \frac{x_n - 1/b}{1/b} \right| = \left| 1 - b \, x_n \right|$$

$$\varepsilon_{n+1} = |1 - b x_{n+1}| = |1 - b x_n (2 - b x_n)|$$
$$= |(1 - b x_n)^2| = \varepsilon_n^2$$

© Digital Integrated Circuits^{2nd}

Properties of the Newton Method

Asymptotically quadratic convergence
 Correction of round-off errors
 Final multiplication by *a* generates a round-off problem incompatible with the Standard IEEE-754

Iterative Division (Goldschmidt)

Define two sequences x_n and y_n such that $x_0 = a$ and $y_0 = b$ $\frac{a}{b} = \frac{x_0}{y_0} = \frac{x_1}{y_1} = \frac{x_2}{y_2} = \dots = \frac{x_n}{y_n} = \dots$ $\delta = 1 - y_0 \quad \rightarrow \quad |\delta| < 1$ $y_1 = y_0 (1+\delta) = 1 - \delta^2$

© Digital Integrated Circuits^{2nd}

Iterative division (Goldschmidt)

$$x_{1} = x_{0} (1 + \delta)$$

$$y_{1} = y_{0} (1 + \delta) = 1 - \delta^{2}$$

$$x_{2} = x_{0} (1 + \delta) (1 + \delta^{2})$$

$$y_{2} = y_{0} (1 + \delta) (1 + \delta^{2}) = 1 - \delta^{4}$$

$$x_{n} = x_{0} (1 + \delta) (1 + \delta^{2}) \dots (1 + \delta^{2^{n-1}})$$

$$y_{n} = y_{0} (1 + \delta) (1 + \delta^{2}) \dots (1 + \delta^{2^{n-1}}) = 1 - \delta^{2^{n}}$$

© Digital Integrated Circuits^{2nd}

Iterative Division (Goldschmidt)

The sequence of x_n tends to a/b
 The convergence is quadratic
 In its present form, this method is affected by roud-off errors

Modified Goldschmidt Algorithm (correction of round-off errors)

$$x_{1} = x_{0} (1 + \delta_{0})$$

$$y_{1} = y_{0} (1 + \delta_{0}) = 1 - \delta_{0}^{2}$$

$$x_{2} = x_{0} (1 + \delta_{0})(1 + \delta_{1})$$

$$y_{2} = y_{0} (1 + \delta_{0})(1 + \delta_{1})$$

$$x_{n} = x_{0} (1 + \delta_{0})(1 + \delta_{1})....(1 + \delta_{n-1})$$

$$y_{n} = y_{0} (1 + \delta_{0})(1 + \delta_{1})....(1 + \delta_{n-1})$$

© Digital Integrated Circuits^{2nd}

The Link between the Newton-Raphson and Goldschmidt Methods

By setting $\delta_n = 1 - b x_n$, the Newton method provides

$$x_{1} = x_{0}(1 + \delta_{0})$$

$$x_{2} = x_{0}(1 + \delta_{0})(1 + \delta_{1})$$

$$\dots = \dots$$

$$x_{n} = x_{0}(1 + \delta_{0})(1 + \delta_{1})\dots(1 + \delta_{n-1})$$

© Digital Integrated Circuits^{2nd}

The Link between the Newton-Raphson and Goldschmidt Methods

By expressing δ_n vs δ_0 , the Newton method provides

$$x_{1} = x_{0}(1 + \delta_{0})$$

$$x_{2} = x_{0}(1 + \delta_{0})(1 + \delta_{0}^{2})$$

$$\dots = \dots$$

$$x_{n} = x_{0}(1 + \delta_{0})(1 + \delta_{0}^{2})\dots(1 + \delta_{0}^{2^{n-1}})$$

© Digital Integrated Circuits^{2nd}

Comparison between Newton and Goldschmidt methods

- The Newton and Goldschmidt methods are essentially equivalent;
- Both methods exhibit an asymptotically quadratic convergence;
- Both methods are able to correct roundoff errors;
- The Goldschmidt methods directly computes the *a/b* ratio.

© Digital Integrated Circuits^{2nd}

The Binary Shifter

...

© Digital Integrated Circuits^{2nd}

The Barrel Shifter

Area Dominated by Wiring

4x4 barrel shifter

 $Width_{barrel} \sim 2 p_m M$

© Digital Integrated Circuits^{2nd}

Logarithmic Shifter

© Digital Integrated Circuits^{2nd}

0-7 bit Logarithmic Shifter

© Digital Integrated Circuits^{2nd}

ALUs

© Digital Integrated Circuits^{2nd}

 $F(A,B) = G_0 \cdot \overline{A} \,\overline{B} + G_1 \cdot \overline{A} \,B + G_2 \cdot A \,\overline{B} + G_3 \cdot A \,B$

© Digital Integrated Circuits^{2nd}
Two-bit MUX Truth Table

A	B	F
0	0	G_0
0	1	G_1
1	0	G_2
1	1	G_3

$F(A,B) = G_0 \cdot \overline{A} \,\overline{B} + G_1 \cdot \overline{A} \,B + G_2 \cdot A \,\overline{B} + G_3 \cdot A \,B$

© Digital Integrated Circuits^{2nd}

Two-bit Selector Truth Table

G_3	G_2	G_1	G_0	F(A, B)	G_3	G_2	G_1	G_0	F(A,B)
0	0	0	0	0	1	0	0	0	$A \cdot B = \overline{\overline{A} + \overline{B}}$
0	0	0	1	$\overline{A} \cdot \overline{B} = \overline{A + B}$	1	0	0	1	$A \cdot B + \overline{A} \cdot \overline{B}$
0	0	1	0	$\overline{A} \cdot B = \overline{A + \overline{B}}$	1	0	1	0	В
0	0	1	1	\overline{A}	1	0	1	1	$\overline{A \cdot \overline{B}} = \overline{A} + B$
0	1	0	0	$A \cdot \overline{B} = \overline{\overline{A} + B}$	1	1	0	0	A
0	1	0	1	\overline{B}	1	1	0	1	$\overline{A} \cdot \overline{B} = A + \overline{B}$
0	1	1	0	$A \cdot \overline{B} + \overline{A} \cdot B$	1	1	1	0	$\overline{A} \cdot \overline{B} = A + B$
0	1	1	1	$\overline{A \cdot B} = \overline{A} + \overline{B}$	1	1	1	1	1

 $F(A,B) = G_0 \cdot \overline{A} \,\overline{B} + G_1 \cdot \overline{A} \,B + G_2 \cdot A \,\overline{B} + G_3 \cdot A \,B$

© Digital Integrated Circuits^{2nd}

Carry-chain Truth Table

C_{in}	KILL	PROP	C_{out}
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	N.A.
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	N.A.

$$C_{out} = \overline{K + P \,\overline{C}_{in}} = \overline{K} \left(\overline{P} + C_{in} \right)$$

© Digital Integrated Circuits^{2nd}

Function	KILL	PROP	RES	C_{in}	CF
A+B	1	6	6	0	0
$A + B + C_{in}$	1	6	6	1	0
A - B	2	9	6	2	0
B-A	4	9	6	2	0
$A - B - C_{in}$	2	9	6	1	0
$B-A-C_{in}$	4	9	6	1	0

Operation	KILL	PROP	RES	C_{in}	CS
A+1	3	12	6	2	0
B+1	5	10	6	2	0
A-1	12	3	9	2	0
B-1	10	5	9	2	0
-A	12	3	6	2	0
-B	10	5	6	2	0

© Digital Integrated Circuits^{2nd}

Operation	KILL	PROP	RES	C_{in}	CS
A.and.B	0	8	12	0	0
A.or.B	0	14	12	0	0
A.xor.B	0	6	12	0	0
\overline{A}	0	3	12	0	0
\overline{B}	0	5	12	0	0
A	0	12	12	0	0
B	0	10	12	0	0

Function	KILL	PROP	RES	C_{in}	CF
Multiply	1	14	14	0	1
Divide	3	15	15	0	2
A/O	0	14	12	0	3
Mask	10	5	8	2	0
SHL A	3	0	10	0	0
Zero	0	0	0	0	0

Operation	Select	Flag bit	KILL	PROP	RES
Uncond.	0	×			
Multiply	1	0	0	0 -	0 -
Multiply	1	1		0	0
Divide	2	0	0	- 0 0 -	0 0
Divide	2	1	0 -	0 0	0 0
AND/OR	3	0			
AND/OR	3	1		- 0 0 -	

MIPS-X Instruction Format

			M	emory				
1 0	1 0 OP Src1 Dest Offset (17)							
			В	ranch				
0.0	Cond	Src1	Src2 Sc Disp (16)					
			Co	mpute				
0 -	OP	Src1	Src2	Dest	Comp Fune (12)			
			Compute	e immediate				
11	OP	Src1	Dest		Immed (17)			

© Digital Integrated Circuits^{2nd}

Pipeline dependencies in MIPS-X

© Digital Integrated Circuits^{2nd}

Die Photo of MIPS-X

© Digital Integrated Circuits^{2nd}

MIPS-X Architecture

© Digital Integrated Circuits^{2nd}

MIPS-X Instruction Cache-miss timing

© Digital Integrated Circuits^{2nd}

MIPS-X Tag Memory

© Digital Integrated Circuits^{2nd}

MIPS-X Valid Store Array

© Digital Integrated Circuits^{2nd}

RAM Sense Amplifier

© Digital Integrated Circuits^{2nd}

CMOS Dual-port Register Cell

© Digital Integrated Circuits^{2nd}

Self-timed bit-line write circuit

© Digital Integrated Circuits^{2nd}

Register bypass logic

Schematic of comparator circuit

© Digital Integrated Circuits^{2nd}

Cache-miss FSM

© Digital Integrated Circuits^{2nd}