Massimo Rudan, Physics of Semiconductor Devices, Springer (2015), ISBN 978-1-4939-1150-9 (-1151-6 eBook)

Section	Equation	Erratum	Corrige				
Acronyms, line 2 of item "DD"	-	each band	each energy band				
Acronyms, line 2 of item "HD"	-	each band	each energy band				
2.4, right before Eq. (2.18)	-	there should be no new li	between "and" and " $S=$ "				
2.6.4, right after Eq. (2.27)	-	Letting the sum to vanish	Letting the sum vanish				
2.9, Fig. 2.1, x axis	-	$x \quad B$	x_{B}				
3.2, 9 lines from the bottom	-	is revereses	it reverses				
3.6, 2 lines after Eq. (3.22)	-	due to to the collision	due to the collision				
3.7, 3 lines after Eq. (3.30)	-	may have sign	may have a sign				
3.11, right after Eq. (3.55)	-	As in the unperturbed	Like in the unperturbed				
5.5	(5.24)	$\cdots=\mathrm{i} \sum_{k} \cdots$	$\cdots=\mathrm{i} \sum_{\mathbf{k}} \cdots$				
5.9, right before Eq. (5.49)	-	in vacuo	in vacuo				
6.2, paragraph 2 , line 5	-	This problem is present also	This aspect is present also				
6.4, right after Eq. (6.15)	-	.4.	${ }^{4}$				
6.6 .2	(6.32)	$\bar{\zeta}=\cdots$	$\operatorname{Av}[\zeta]=\cdots$				
6.6.2	(6.36)	$\bar{\zeta}=\cdots$	$\operatorname{Av}[\zeta]=\cdots$				
6.6 .2	(6.37)	$\bar{E}=\cdots$	$\operatorname{Av}[E]=\cdots$				
6.6.2	(6.38)	$\bar{E}=\cdots$	$\operatorname{Av}[E]=\cdots$				
7.2, line 2 of note 6	-	coindices with the lower	coincides with the lower				
7.3, 6 lines before Eq. (7.16)	-	Maxwell-Bolzmann distribution	Maxwell-Boltzmann distribution				
7.4.1, right before Eq. (7.18)	-	$\overline{n h \nu}=\cdots$	$\operatorname{Av}[n h \nu]=\cdots$				
7.4.1	(7.18)	$\overline{n h \nu}=\cdots$	$\operatorname{Av}[n h \nu]=\cdots$				
8.3, 2 lines after Eq. (8.12)	-	positive numbers	non-negative numbers				
8.3, 3 lines before Eq. (8.13)	-	$\|c\|^{2}=1 /\\|\varphi\\|^{2}$	$\|c\|^{2}=1 /\\|f\\|^{2}$				
8.3.1, right before Eq. (8.21)	-	is called Hermitean	is called Hermitean				
8.4 , paragraph 3 , line 1	-	only one eigenfuction	only one eigenfunction				
9.2 , line 1	-	Following De Broglie's line	Following de Broglie's line				
9.2 , line 7	-	of De Broglie's theory	of de Broglie's theory				
9.4 , note 1	-	$\ldots=\mathrm{m}^{-2} \mathrm{t}^{-1}$	$\ldots=\mathrm{m}^{-2} \mathrm{~s}^{-1}$				

Massimo Rudan, Physics of Semiconductor Devices, Springer (2015), ISBN 978-1-4939-1150-9 (-1151-6 eBook)

Section	Equation	Erratum	Corrige
9.7.3, 2 lines before Eq. (9.33)	-	definition of (10.13)	definition (10.13) of the
9.7.3, 6 lines from the bottom	-	had been noted by	had been observed by
10.3, 2 lines after Eq. (10.4)	-	Given a function	Given a square-integrable function
10.3	(10.8)	$\hat{\vec{p}}=\cdots$	$\hat{\mathbf{p}}=\cdots$
11.2.2, 4 lines before Eq. (11.11)	-	whould	would
11.2.2, right before Eq. (11.14)	-	wider	broader
11.4, 3 lines before Eq. (11.36)	-	by hypotesis	by hypothesis
12.2, 3 lines after Eq. (12.7)	-	identically, whereas	identically; in turn,
12.6.1, second to last line	-	harmonic oscillator	linear harmonic oscillator
13.5	(13.40)	$\cdots 2 m r \cdots$	$\cdots 2 m_{0} r \cdots$
13.6.1, 2 lines after Eq. (13.60)	-	the above finding,	the above findings,
14.1, line 15	-	form an isolated	forms an isolated
14.4, line 3	-	$a_{s}\left(t_{P}\right)$	$a_{s}\left(t_{P}\right)$
15.3, 4 lines after Eq. (15.9)	-	coordinate group	coordinate groups
15.5, 5 lines after Eq. (15.16)	-	antisymmmetrical	antisymmetric
15.6, second to last line	-	applies to system	applies to systems
15.7, 3 lines after Eq. (15.30)	-	Eq. (15.28)	equation like (15.28)
15.8.2, line 3	-	subject	subjected
15.9.5, 2 lines before Eq. (15.78)	-	experimentally,	experimentally.
16.1, 10 lines from the bottom	-	identical particles	identical fermions
16.3, 6 lines after Eq. (16.15)	-	in turn, the part	the part
16.6	(16.28)	$V_{a}(\vec{R})=U_{a}(\vec{R})+\cdots$	$V_{a}(\mathbf{R})=U_{a}(\mathbf{R})+\cdots$
16.6	(16.28)	$\cdots+E_{e}\left(\vec{R}_{0}\right)+U_{u}\left(\vec{R}_{0}\right)$.	$\cdots+E_{e}\left(\mathbf{R}_{0}\right)+U_{u}\left(\mathbf{R}_{0}\right)$.
17.2, 3 lines from the bottom	-	of GaAs	of Si, Ge, and GaAs
17.2, last line	-	of the table	of Table 17.2
17.3, 2 lines after Eq. (17.9)	-	form. It follows that	form. As a consequence it is
17.3, 3 lines after Eq. (17.9)	-	that the direct lattice	the direct lattice
17.5, 4 lines after Eq. (17.22)	-	that is provisionally left	that is momentarily left
17.6, line 6	-	This means the nuclei	This means that the nuclei
17.6.5.2, caption of Fig. 17.18	-	[100] direction	[111] direction

Massimo Rudan, Physics of Semiconductor Devices, Springer (2015), ISBN 978-1-4939-1150-9 (-1151-6 eBook)

Section	Equation	Erratum	Corrige
17.6.5.2, Fig. 17.18, x axis	-	[100] direction	[111] direction
17.6.6, paragraph 2, line 6	-	tend increase the electron	tend to increase the electron
17.6.6, line 1 of note 19	-	the fact the large-area,	the fact that large-area,
17.6.8, right after Eq. (17.105)	-	As in the case	Like in the case
17.7.2, line 2 of note 21	-	translation	translationally-invariant
18.4, note 10	-	such as case	such a case
18.4.1.1, right before Eq. (18.17)	-	intrisic	intrinsic
18.4.1.1, right after Eq. (18.24)	-	form a system	forms a system
18.4.2.2, Eq. (18.45)	-	$\varphi_{F}=-\frac{k_{B} T}{q} \cdots>0$	$\varphi_{F}=\frac{k_{B} T}{q} \cdots>0$
18.4.3, right before Eq. (18.48)	-	donor dopant	donor-dopant concentration
18.4.3, 2 lines after Eq. (18.48)	-	acceptor dopant	acceptor-dopant concentration
18.4.3, Eq. (18.52)	-	$\varphi_{F}=\cdots<0$	$\varphi_{F}=\cdots>0$
18.5, note 16	-	Sect. 23.3.	Sect. 19.3.3.
18.5, right after Eq. (18.58)	-	Note that the summands	The summands
18.5, 2 lines after Eq. (18.60)	-	first relation	the first relation
18.6, right before Eq. (18.67)	-	which is [100,101]	which is, for silicon [100,101]
18.7.2, 13 lines from the bottom	-	coincide	coincides
18.7.2, 9 lines from the bottom	-	loose	lose
18.7.3, note 20	-	subject to the force	subjected to the force
19.5.2, note 31	-	$-q(n / 6) \sum_{a=1}^{M_{C}} \mathbf{v}_{a}$	$-q\left(n / M_{C}\right) \sum_{a=1}^{M_{C}} \mathbf{v}_{a}$
19.5.2, note 31	-	$\mathbf{v}=(1 / 6) \sum_{a=1}^{M_{C}} \mathbf{v}_{a}$	$\mathbf{v}=\left(1 / M_{C}\right) \sum_{a=1}^{M_{C}} \mathbf{v}_{a}$
19.6.4, 5 lines before Eq. (19.158)	-	$\eta^{2} \mathbf{i}$	$\eta^{2} \mathbf{i}_{i}$
19.6.4, 3 lines before Eq. (19.158)	-	$\eta^{4} \mathbf{i}$	$\eta^{4} \mathbf{i}_{i}$
20.2.1, 2 lines before Eq. (20.5)	-	$r_{a}-r_{p}$	$r_{a}-r_{b}$
20.2.3, line 9	-	thought of aligned	thought of as being aligned
20.2.3, 3 lines before Eq. (20.28)	-	traps levels	trap levels

Massimo Rudan, Physics of Semiconductor Devices, Springer (2015), ISBN 978-1-4939-1150-9 (-1151-6 eBook)

Section	Equation	Erratum	Corrige
20.2.3, right before Eq. (20.28)	-	In conclusion, one finds	With this provision, one finds
20.4 , line 1 of note 14	-	time-dependence	time dependence
20.4 , note 15	-	the two-particle	two-particle
20.5.2, 6 lines after Eq. (20.63)	-	number ionized impurities	number of ionized impurities
20.5.2, 3 lines before Eq. (20.64)	-	the model is modified	the expression is modified
20.5.4, 8 lines after Fig. 20.7	-	interaction	interactions
21.2.1	(21.4)	$\cdots=k_{B} T \log \left(\frac{N_{A} N_{D}}{k_{B} T}\right)$	$\cdots=k_{B} T \log \left(\frac{N_{A} N_{D}}{n_{i}^{2}}\right),$
21.2.1	(21.5)	$\psi_{0}=k_{B} T \log \left(\frac{N_{A} N_{D}}{k_{B} T}\right)$,	$\psi_{0}=\frac{k_{B} T}{q} \log \left(\frac{N_{A} N_{D}}{n_{i}^{2}}\right)$
21.3.1, 6 lines after Eq. (21.23)	-	minority carries	minority carriers
21.3.1, 8 lines after Eq. (21.23)	-	$\cdots q D_{n} \mathrm{~d} p / \mathrm{d} x \simeq q D_{n} \mathrm{~d} p / \mathrm{d} x$	$\cdots q D_{n} \mathrm{~d} n / \mathrm{d} x \simeq q D_{n} \mathrm{~d} n / \mathrm{d} x$
21.3.1, 4 lines after Eq. (21.32)	-	I_{U} increases with $\|V\|$.	$\left\|I_{U}\right\|$ increases with $\|V\|$.
21.6.1, third line	-	minority carries	minority carriers
21.6.3, right after Eq. (21.74)	-	expression (21.72) of the	expression (21.73) of the
22.3, inset of Fig. (22.9)	-	$r \quad \mathrm{r}$	r
22.4.1, first line	-	p-type	p-type
22.4.1, inset of Fig. (22.13)	-	$\mathrm{n} / \mathrm{p}_{\mathrm{p} 0} \quad\left(\mathrm{~N}_{\mathrm{A}}-\mathrm{p}\right) / \mathrm{p}_{\mathrm{p} 0}$	$n / p_{p 0} \quad\left(N_{A}-p\right) / p_{p 0}$
22.6.2, right after Eq. (22.57)	-	$-\beta \gamma \sqrt{\varphi_{s}}$	$\beta \gamma \sqrt{\varphi_{s}}$
25.3	(25.22)	$\cdots \exp \left(-t / \tau_{p}\right)\left(4 \pi D_{p} t\right)^{3 / 2} \cdots$	$\cdots \exp \left(-t / \tau_{p}\right) \cdots$
B.4, 2 lines before Eq. (B.21)	-	$\gamma \doteq \cdots$	$\gamma=\cdots$
B.4, 2 lines before Eq. (B.21)	-	$\zeta \doteq \cdots$	$\zeta=\cdots$
B.4, 2 lines before Eq. (B.21)	-	$\sigma \doteq \cdots$	$\sigma=\cdot \cdot$
B.5, after Eq. (B.38)	-	further by improved	further be improved
C.16, right before Eq. (C.128)	-	$B_{4}=-1 / 30$	$B_{4}=-1 / 30$, one finds
Solutions, $15^{\text {th }}$ line of Sol. 5.2	-	(D)	the relation above
Solutions, last Eq. of Sol. 6.1	-	$\bar{E}_{n}=\cdots$	$\operatorname{Av}\left[E_{n}\right]=\cdots$
Solutions, second to last line of Sol. 13.2	-	r_{1} is the radius	r_{1} the radius
Solutions, third and sixth line of Sol. 15.1	-	$E(P=0.9)-E(P=0.1)$	$E(P=0.1)-E(P=0.9)$
Solutions, fourth and sixth line of Sol. 15.1	-	$E(P=0.99)-E(P=0.01)$	$E(P=0.01)-E(P=0.99)$
Solutions, last line of Sol. 23.2	-	$\mu \mathrm{m}$	$\mu \mathrm{m}$.

